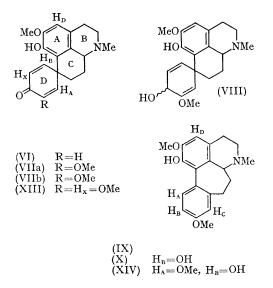

Syntheses of Homoaporphine-type Compounds by Phenolic Oxidative Coupling

By T. KAMETANI,* K. FUKUMOTO, H. YAGI, and F. SATOH

(Pharmaceutical Institute, School of Medicine, Tohoku University, Kitayobancho, Sendai, Japan)

ANDROCYMBINE (I) and melanthioidine (II) can be derived biogenetically from 1-phenethyltetrahydroisoquinoline (III) by phenolic oxidative coupling.¹⁻³


We have been studying the phenolic oxidative coupling reactions of the phenethylisoquinolines in order to obtain androcymbine (I) and melanthioidine (II). Very recently Battersby and his co-workers have reported that phenolic oxidative coupling of phenethylisoquinoline (XI) leads to dienone (XIII), whose dienone-phenol rearrangement gives homoaporphine, multifloramine (XIV), which is a novel alkaloid isolated from *Kreysigia multiflora* by the same authors.⁴ This work prompted us to report our independent results on oxidation of 1,2,3,4-tetrahydro-7-hydroxy-1-(4hydroxyphenethyl)-6-methoxy-2-methylisoquinoline (IV) and its methoxy-analogues (V and XI).

The phenethylisoquinolines (IV), (V), and (XI), prepared by standard methods,[†] were oxidized with potassium ferricyanide in a two-phase system consisting of 8% aqueous ammonium acetate solution and chloroform or with aqueous ferric chloride solution to give homoproaphorphines.

The oxidation of the first isoquinoline (IV) gave a dienone (VI), m.p. 248-249° (decomp.) [1.0% yield with K₃Fe(CN)₆, 19.0% yield with FeCl₃], whose structure was confirmed by the following evidence. The molecular formula, C₁₉H₂₁O₃N, was supported by microanalysis and mass spectrometry $(M^+, 311; m/eM-1, M-17, M-28, M-29, M-29)$ M-43, M-71), and it showed v_{max} 1600, 1619, 1657 (in KBr) and 3500 cm.⁻¹ (in CHCl₃); λ_{max} 235, 290 (log ϵ , 4.53, 3.66) (in MeOH); its n.m.r. spectrum (τ in CDCl₃) showed the expected methyl resonances at 7.55 (NMe) and 6.20 (OMe) as singlets, olefinic protons at 3.55-3.90 (2H; $\alpha \alpha'$) and 2.80-3.30 (2H; $\beta \beta'$) as two AB type quartets, and a singlet at 3.44 for single aromatic proton in the H_p position. These facts well support the dienone structure (VI).

† Satisfactory analyses were obtained for all new compounds described herein.

On the other hand, the second isoquinoline (V) gave a mixture of two isomeric dienones (VIIa and VIIb), from which both compounds were separated by recrystallization from benzene. One of them,

colourless prisms, m.p. 156-158° (decomp.) (VIIa), $[3\cdot5-4\cdot5\%]$ yield with $K_3Fe(CN)_6$, $19\cdot1\%$ yield with $FeCl_3$ had a molecular formula, $C_{20}H_{23}O_4N, \frac{1}{2}C_6H_6$ [microanalysis and mass spectrometry $(M^+; 341, m/e; M-1, M-17,$ M-28, M-29, M-43] and showed v_{max} 1608, 1634, 1658, and 3495 cm.⁻¹ (in CHCl₃); λ_{max} 234, 286 (log ϵ , 4.406, 4.20) (in MeOH); its n.m.r. spectrum (τ in CDCl₃) showed the methyl resonances at 7.57 (NMe), 6.24 (aromatic OMe), and $6{\cdot}45$ (olefinic OMe), and a singlet at $3{\cdot}47$ due to single aromatic proton of H_p -position. In addition, there appeared a doublet at 4.02 (1H, H_A ; $J_{AB} = 2.5 \text{ c./sec.}$, a doublet at 3.72 (1H, H_X ; $J_{BX} = 10 \text{ c./sec.}$, and a pair of doublets centred at 3.14 (1H, H_B, coupled with H_A and H_x). The other dienone (VIIb), colourless prisms, $C_{20}H_{23}O_4N, \frac{1}{2}C_6H_6, \ddagger m.p. 193-195^\circ, [4.8\% yield]$ with $K_3Fe(CN)_6$, 17.5% yield with $FeCl_3$] was very similar to the former product (VIIa) in the u.v. $(\lambda_{\max} 244, 289 (\log \epsilon, 4.12, 3.80) (in MeOH)],$ i.r. [1608, 1636, 1658, and 3495 cm.⁻¹ (in CHCl₂)] and mass spectra, but there was a little difference

in the n.m.r. spectrum (τ in CDCl₃); for it showed the methyl resonances at 7.58 (NMe), 6.26(aromatic OMe) and 6.40 (olefinic OMe), aromatic proton at 3.48, and olefinic proton at 4.20 (1H, \mathbf{H}_{A} ; a doublet, $J_{AB} = 2.5 \text{ c./sec.}$), $3.81 (1H, H_X)$ a doublet, $J_{BX} = 10 \text{ c./sec.}$ and 3.0 (1H, H_B, a pair of doublets, coupled with H_A and H_X). One dienone should have the methoxy-group of ring D lying above the general plane of rings A, B, and C and the methoxy-group of ring D in the other dienone was below the general plane, though which is which is not yet clear. The oxidation of the third isoquinoline (XI) gave the same dienone (XIII), m.p. 176-178° (decomp.),‡ [18.0% yield with $\mathrm{FeCl}_3]$ [i.r. ν_{max} 1618, 1656, and 3500 (in CHCl₃), u.v. λ_{\max} 278 (log ϵ , 4.03) (in MeOH)], whose n.m.r. data were identical with that of Battersby's sample.4

Reduction of VIIa with NaBH₄ afforded a dienol (VIII), m.p. 122-123°, [v_{max} 1638 and 3495 (in CHCl₃); λ_{max} 290 (in MeOH)] which underwent dienol-benzene rearrangement with a methanolic hydrogen chloride solution to give the homoaporphine (IX), m.p. 170-175°. This structure was assigned as (IX) from the spectral evidences: the i.r. and u.v. spectra showed v_{max} 3505 (in CHCl₃) and $\lambda_{\rm max}$ 260, 290 (in MeOH), respectively, and n.m.r. spectrum (τ in CDCl₃) revealed the following peaks, 7.61 (NMe), 6.19 (OMe), 4.14 (OH), 3.41 (1H, H_D, singlet), 3.20 (1H, H_C, doublet, $J_{BC} = 2.3 \text{ c./sec.}$), 3.17 (1H, H_B, a pair of doublets, $J_{AB} = 7.7$, $J_{BC} = 2.3 \text{ c./sec.}$), 2.55 (1H, H_A, doublet, $J_{AB} = 7.7 \text{ c./sec.}$).

The dienone (VIIa) was subjected to dienonephenol rearrangement with concentrated hydrochloric acid-acetic acid to afford an another phenolic base, m.p. 185-187°, whose structure was tentatively assigned as structure (X) by spectroscopic methods; i.r.: v_{max} 3505 (in CHCl₃), u.v.: λ_{max} 264, 291 (in MeOH), and n.m.r. (p.p.m. in CF₃·CO₂H) 4.00 (2 OMe), 6.88, 6.98, 7.25 (singlets, aromatic protons).

Attempts to obtain an androcymbine-type compound by phenolic oxidation of isoquinoline (XII) were unsuccessful. The above oxidation, followed by rearrangement, provides an interesting result from the point of biosynthesis of the homoaporphine alkaloids.

(Received, June 26th, 1967; Com. 644.)

 \pm The benzene of this solvate was identified by its n.m.r. ($\tau 2.67$ 3H singlet) and mass spectra (m/e 78).

- ¹ A. R. Battersby, R. B. Herbert, L. Pijewska, and F. Šantavý, Chem. Comm., 1965, 228.
- ² A. R. Battersby and R. B. Herbert, Chem. Comm., 1965, 415.
- A. R. Battersby, R. B. Herbert, Z. McDonald, R. Ramage, and J. H. Clements, Chem. Comm., 1966, 603.
 A. R. Battersby, R. B. Bradbury, R. B. Herbert, M. H. G. Munro, and R. Ramage, Chem. Comm., 1967, 450.